This book deals with energy delivery challenges of the power processing unit of modern computer microprocessors. It describes in detail the consequences of current trends in miniaturization and clock frequency increase, upon the power delivery unit, referred to as voltage regulator. This is an invaluable reference for anybody needing to understand the key performance limitations and opportunities for improvement, from both a circuit and systems perspective, of state-of-the-art power solutions for next generation CPUs.

This book reports on recent progress in emerging technologies, modern characterization methods, theory and applications of advanced magnetic materials. It covers broad spectrum of topics: technology and characterization of rapidly quenched nanowires for information technology; fabrication and properties of hexagonal ferrite films for microwave communication; surface reconstruction of magnetite for spintronics; synthesis of multiferroic composites for novel biomedical applications, optimization of electroplated inductors for microelectronic devices; theory of magnetism of Fe-Al alloys; and two advanced analytical approaches for modeling of magnetic materials using Everett integral and the inverse problem approach. This book is addressed to a diverse group of readers with general background in physics or materials science, but it can also benefit specialists in the field of magnetic materials.

Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films. Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties. Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field. Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Focuses on the properties of
metallic films, including mechanical, electrical, magnetic, optical, and thermal properties

"Magnetic components are required in most efficient dc-dc power converters. Power converters using a switching frequency in the multi-megahertz range (1-100 MHz) have been developed for miniaturization. However, the high switching frequency involves challenges in circuit and magnetic component design. Air-core inductors are used in most high-frequency converters. However, magnetic-core inductors are still attractive because they provide the opportunity to miniaturize the inductor size while maintaining low loss, whereas air-core inductors require substantial thickness to obtain good performance. Advanced magnetic materials are required for magnetic-core inductors to operate efficiently in the high frequency range. Miniaturized thin-film power inductors for high-frequency dc-dc power conversion are investigated. Co-Zr-O, an advanced nanogranular thin-film magnetic material, exhibits high saturation flux density (>1 T), high resistivity, and low hysteresis loss. Low-profile thin-film inductors with this advanced magnetic material are expected to demonstrate high power density and high efficiency, and be suitable for multi-megahertz power applications. A high-frequency resistivity measurement method is developed to better predict the loss in multilayer thin-film magnetic material for inductor design. Two types of microfabricated inductors are investigated: a "pot-cor" inductor which has two magnetic layers surrounding the winding layer in the middle, and a toroidal inductor which has two conductor layers surrounding the magnetic layer in the middle. A new category of anisotropic thin-film magnetic material, named radially anisotropic magnetic material, with a radial easy axis and circumferential hard axis, is introduced and developed to be used in thin-film toroidal inductors. Loss models, inductor design methods, co-optimization of magnetic circuits with circuits, fabrication, and measurements are studied in this thesis."

A sequel to Power Electronics Technology and Applications, this text is targeted specifically towards the needs of practicing design engineers. The focus is to provide the practicing engineer with up-to-date technology and emerging applications.

This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and efficient switch drivers in standard CMOS technologies.

Issues for 1973- cover the entire IEEE technical literature.

The accelerating trend to miniaturize electronic systems and devices is placing large demands on the components responsible for delivering electrical power to these systems. Most power conversion circuits require magnetic components (inductors and transformers) in order to operate at high efficiencies; these components, however, have not yet been widely miniaturized and integrated with electronic components that are fabricated in a CMOS process and are most often realized as discrete off-chip components. Improved on-chip inductors are therefore required to realize a monolithic Power Supply On-Chip (PwrSoC) for electronic systems where size and efficiency are of critical importance. This thesis presents design, modeling, optimization, and micro-fabrication techniques for building chip-scale racetrack power inductors with thin-film magnetic cores. Our inductors are designed for high-power-density and high efficiency dc-dc converters which transfer 25 W of power at frequencies between 5 and 30 MHz. The dc-dc converter is designed to serve as a high-input-voltage solid-state lighting driver. Magnetic components on silicon substrates with sputtered Co-Zr-O magnetic cores are optimized using a series of models that characterize each inductor loss mechanism. The optimized designs were fabricated and tested at small-signal levels and in the high-frequency power converter. The converter achieves an 89% conversion efficiency at 5 MHz with an inductor power density of 1 W/mm² of substrate area. Small-signal measurements of the inductors are compared with modeled predictions to validate the design optimization approach. Fabricated components achieve inductance values of 1.2 [μH] and peak quality factors of 15.1 at 8.3 MHz.

Power Electronics Handbook, Fourth Edition, brings together over 100 years of combined experience in the specialist areas of power engineering to offer a fully revised and updated expert guide to total power solutions. Designed to provide the best technical and most commercially viable solutions available, this handbook undertakes any or all aspects of a project requiring specialist design, installation, commissioning and maintenance services. Comprising a complete revision throughout and enhanced chapters on semiconductor diodes and transistors and thyristors, this volume includes renewable resource content useful for the new generation of engineering
professionals. This market leading reference has new chapters covering electric traction theory and motors and wide band gap (WBG) materials and devices. With this book in hand, engineers will be able to execute design, analysis and evaluation of assigned projects using sound engineering principles and adhering to the business policies and product/program requirements. Includes a list of leading international academic and professional contributors. Offers practical concepts and developments for laboratory test plans Includes new technical chapters on electric vehicle charging and traction theory and motors Includes renewable resource content useful for the new generation of engineering professionals.

This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students. It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced Moore than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.

Trends in the miniaturisation of electronic products, especially in the portable products area, has sparked considerable interest in the miniaturisation of the energy processing electronics i.e. the power conversion circuits such as the switched mode power supply (SMPS). Unlike digital electronics which have benefited from miniaturisation and integration in microelectronics, power conversion electronics have not significantly reduced in size. This is directly due to the fact that power conversion requires energy storage components such as inductors and capacitors. The value of the inductors and capacitors required can be reduced if the switching frequency of the power converter is increased. In order to miniaturise the power converter, the switching frequency must be increased so that passive components can be miniaturised and integrated. Traditionally the inductive components have been difficult to integrate on chip. This work focused on the design and fabrication of integrated inductors-on-silicon for very high frequency power conversion (20 \{u2013\} 100 MHz). Initially an analytical model for micro-inductors which was developed in previous work was used to design inductors for operation up to 20 MHz. The designs selected for fabrication had a footprint area between 5 \{u2013\} 9 mm² and a predicted device efficiency of 90% and above. These models were validated by finite element analysis before fabrication. The fabricated prototypes displayed a low loss of inductance to 20 MHz and current handling ability to 0.5 A. The micro-inductors were then interfaced with a high frequency dc-dc converter (20 \{u2013\} 100 MHz) developed by NXP Semiconductor, and achieved an inductor efficiency of 93% at 20 MHz. The maximum converter efficiency with the micro-inductor was measured to be 78.5%, which to date is highest quoted inductor-on-silicon device efficiency in a converter application at 20 MHz. Circuit equivalent lumped-element models of the micro-inductor for use in circuit simulation software were also developed. This equivalent circuit model includes elements such as capacitance, which are not accounted for in the previously developed analytical model. The initial micro-inductor devices performance was found to be comparable to commercial chip inductors for inductor efficiency when used in a converter. However, if the micro-inductor technology is to compete as a viable alternative to commercial devices, it needed to reduce its footprint area dramatically. This was achieved by using an optimisation software engine to find the inductor designs with maximum efficiency for a given footprint area. The footprint of these optimised devices ranged from 0.5 \{u2013\} 2.5 mm² for a range of inductances to 200 nH. A range of optimised devices were fabricated and the measured optimised devices displayed a low loss of inductance to tens of MHz and good current handling capability. However, measured dc resistance was found to be substantially higher than design, due to issues in the fabrication process. The fabricated inductors also highlighted the trade-offs that are introduced in micro-inductor performance vs. footprint area. This design trade-off was also reflected in micro-inductor performance in a converter. An optimised 2.5 mm² area device was tested in a dc-dc converter at 20 MHz, which resulted in a slightly lower peak micro-inductor efficiency of 90.5% than the previous larger devices. The fabricated optimised micro-inductors achieve an inductance density (inductance per unit area) ranging from 66 - 110 nH/mm² and display current handling ability of 500mA for the 2.5 mm², 250mA for the 1.3 mm² and 150mA for the 0.5 mm² area device. For inductors aimed at power conversion applications, this work shows a significant improvement to what is reported in literature - in high frequency operation to tens of MHz, inductance density and current handling.

This collection of important papers provides a comprehensive overview of low-power system design, from component technologies and circuits to architecture, system design, and CAD techniques. LOW POWER CMOS DESIGN summarizes the key low-power contributions through papers written by experts in this evolving field.

Power consumption has become a major design consideration for battery-operated, portable systems as well as high-performance, desktop systems. Strict limitations on power dissipation must be met by the designer while still meeting ever higher computational requirements. A comprehensive approach is thus required at all levels of system design,
ranging from algorithms and architectures to the logic styles and the underlying technology. Potentially one of the most important techniques involves combining architecture optimization with voltage scaling, allowing a trade-off between silicon area and low-power operation. Architectural optimization enables supply voltages of the order of 1 V using standard CMOS technology. Several techniques can also be used to minimize the switched capacitance, including representation, optimizing signal correlations, minimizing spurious transitions, optimizing sequencing of operations, activity-driven power down, etc. The high-efficiency of DC-DC converter circuitry required for efficient, low-voltage and low-current level operation is described by Stratakos, Sullivan and Sanders. The application of various low-power techniques to a chip set for multimedia applications shows that orders-of-magnitude reduction in power consumption is possible. The book also features an analysis by Professor Meindl of the fundamental limits of power consumption achievable at all levels of the design hierarchy. Svensson, of ISI, describes emerging adiabatic switching techniques that can break the CV²f barrier and reduce the energy per computation at a fixed voltage. Srivastava, of AT&T, presents the application of aggressive shut-down techniques to microprocessor applications.

This accessible text is now fully revised and updated, providing an overview of fabrication technologies and materials needed to realize modern microdevices. It demonstrates how common microfabrication principles can be applied in different applications, to create devices ranging from nanometer probe tips to meter scale solar cells, and a host of microelectronic, mechanical, optical and fluidic devices in between. Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding are covered. This second edition includes: expanded sections on MEMS and microfluidics related fabrication issues new chapters on polymer and glass microprocessing, as well as serial processing techniques 200 completely new and 200 modified figures more coverage of imprinting techniques, process integration and economics of microfabrication 300 homework exercises including conceptual thinking assignments, order of magnitude estimates, standard calculations, and device design and process analysis problems solutions to homework problems on the complementary website, as well as PDF slides of the figures and tables within the book. With clear sections separating basic principles from more advanced material, this is a valuable textbook for senior undergraduate and beginning graduate students wanting to understand the fundamentals of microfabrication. The book also serves as a handy desk reference for practicing electrical engineers, materials scientists, chemists and physicists alike. www.wiley.com/go/Franssila_Micro2e

CMOS DC-DC Converters aims to provide a comprehensive dissertation on the matter of monolithic inductive Direct-Current to Direct-Current (DC-DC) converters. For this purpose seven chapters are defined which will allow the designer to gain specific knowledge on the design and implementation of monolithic inductive DC-DC converters, starting from the very basics.

MEMS technology and applications have grown at a tremendous pace, while structural dimensions have grown smaller and smaller, reaching down even to the molecular level. With this movement have come new types of applications and rapid advances in the technologies and techniques needed to fabricate the increasingly miniature devices that are literally changing our world. A bestseller in its first edition, Fundamentals of Microfabrication, Second Edition reflects the many developments in methods, materials, and applications that have emerged recently. Renowned author Marc Madou has added exercise sets to each chapter, thus answering the need for a textbook in this field. Fundamentals of Microfabrication, Second Edition offers unique, in-depth coverage of the science of miniaturization, its methods, and materials. From the fundamentals of lithography through bonding and packaging to quantum structures and molecular engineering, it provides the background, tools, and directions you need to confidently choose fabrication methods and materials for a particular miniaturization problem. New in the Second Edition Revised chapters that reflect the many recent advances in the field Updated and enhanced discussions of topics including DNA arrays, microfluidics, micromolding techniques, and nanotechnology In-depth coverage of bio-MEMS, RF-MEMS, high-temperature, and optical MEMS. Many more links to the Web Problem sets in each chapter

The book gathers the major issues involved in the practical design of Power Management solutions in wireless products as Internet-of-things. Presentation is not about state-of-the-art but about appropriation of validated recent technologies by practicing engineers. The book delivers insights on major trade-offs and a presentation of examples as a cookbook. The content is segmented in chapters to make access easier for the lay-person.
This compendium reports fundamental science and engineering advances of the US Army Research Laboratory (ARL) within the area of Energy and Power technologies. Although, in general, ARL’s Materials Research encompasses a broad range of materials technologies (e.g.: Photonics, Electronics, Biological and Bio-Inspired Materials, Structural Materials, High Strain and Ballistic Materials, and Manufacturing Science), this publication specifically addresses selected energy and power material related work at ARL. While this work includes electrochemical energy storage (batteries and capacitors) and electrochemical energy conversion (fuel cells, photoelectrochemistry, and photochemistry), special emphasis is given on electrochemical energy storage. • Micro Electro-Mechanical Systems (MEMS): Power density, efficiency, and robustness of motors, generators, and actuators while also reducing their life cycle costs. • Energy Storage: Electrical and electrochemical energy storage devices to decrease device size, weight, and cost as well as increase their capabilities in extreme temperatures and operating conditions. • Power Control and Distribution: Tactical, deployable power systems using conventional fuels, alternative fuels, and energy harvested from renewable/ambient sources. • Power Generation/Energy Conversion: Smart energy networks for platforms, forward operating bases, and facilities using modeling and simulation tools as well as new, greater capability and efficiency components. • Thermal Transport and Control: Heat and higher power density systems, advanced components, system modeling, and adaptive or hybrid-cycle technologies. Keywords: Electrochemical Energy Storage, Batteries, Capacitors, Electrochemical Energy Conversion, Fuel Cells, Photoelectrochemistry, Photochemistry, High Voltage Electrolytes, Li-ion Batteries, Li-ion Chemistry, Lithium-Sulphur Batteries, Nuclear Metastables, Pyroelectric Energy Conversion, Charged Quantum Dots, High-Efficiency Photovoltaics, IR Sensing, GaN Power Schottky Diodes, Threshold-Voltage Instability, Reliability Testing, SiC MOSFETs, Power Electronics Packaging, High Voltage 4H-SiC GTOs, Silicon Carbide, Avalanche Breakdown Diode, SiC PIN Diodes, Thyristor Protection, Compact DC-DC Battery Chargers

Although they are some of the main components in the design of power electronic converters, the design of inductors and transformers is often still a trial-and-error process due to a long working-in time for these components. Inductors and Transformers for Power Electronics takes the guesswork out of the design and testing of these systems and provides a broad overview of all aspects of design. Inductors and Transformers for Power Electronics uses classical methods and numerical tools such as the finite element method to provide an overview of the basics and technological aspects of design. The authors present a fast approximation method useful in the early design as well as a more detailed analysis. They address design aspects such as the magnetic core and winding, eddy currents, insulation, thermal design, parasitic effects, and measurements. The text contains suggestions for improving designs in specific cases, models of thermal behavior with various levels of complexity, and several loss and thermal measurement techniques. This book offers in a single reference a concise representation of the large body of literature on the subject and supplies tools that designers desperately need to improve the accuracy and performance of their designs by eliminating trial-and-error.

This text comprises the proceedings of the 1999 International Symposium on Microelectronics.

Power electronics represent a key technology for improving the functionality and performance, and reducing the energy consumption of many systems. However, the size, cost, and performance constraints of conventional power electronics currently limit their use. This is especially true in relatively high-voltage, low-power applications such as off-line power supplies, light-emitting diode (LED) drivers, converters and inverters for photovoltaic panels, and battery interface converters; a LED driver application serves as a motivation example throughout the thesis. Advances in the miniaturization and integration of energy-conversion circuitry in this voltage and power range would have a tremendous impact on many such applications. Magnetic components are often the largest and most expensive components in power electronic circuits and are responsible for a large portion of the power loss. As operating frequencies are increased, the physical size of the passives can, in theory, be reduced while maintaining or improving efficiency. Realizing this reduction in size and the simultaneous improvement in efficiency and power density of power electronic circuits requires improvements in magnets technology. This thesis focuses on the challenge of improving magnets through the optimization, and design of air-core toroidal inductors for integration into high-efficiency, high-frequency power electronic circuits. The first part of the thesis presents the derivation of models for stored energy, resistance and parasitic capacitance of microfabricated toroidal inductors developed for use in integrated power electronics. The models are then reduced to a sinusoidal-steady-state equivalent-circuit model. Two types of toroidal MEMS inductors are considered: in-silicon inductors (with or without silicon core) and in-insulator inductors. These inductors have low profiles and a single-layer winding fabricated via high-aspect-ratio molding and electroplating. Such inductors inevitably have a significant gap between winding turns. This makes the equivalent resistance more difficult to model. The low profile increases the
significance of energy stored in the winding which, together with the winding gap, makes the equivalent inductance more difficult to model as well. The models presented in this thesis account for these effects. In the case of in-silicon inductors, magnetically and electrically driven losses in different regions of silicon are modeled analytically as well. The second part of the thesis focuses on the optimized design of microfabricated toroidal inductors for a LED driver. The models developed in the first part of the thesis allow optimization of inductor designs based on objectives such as minimizing substrate area, maximizing efficiency, and simplifying the fabrication process by maximizing minimum feature size. Because the magnetic size and loss depend strongly on the driver design parameters, and the driver performance depends strongly on the inductance value and loss, the simultaneous optimization of driver components and magnetic parameters is used in the design process. The use of computationally efficient models for both magnets and other circuit components permits numerical optimization using the general co-optimization approach. Finally, a multi-dimensional Pareto-optimal filtering is applied to reduce the feasible design set to those on the multi-objective optimality frontier. For the case of LED drivers, the current state of the art efficiencies range from 65% to 90%. The co-optimization process results in efficiencies greater than 90% while reducing the size of the LED driver by 10 to 100 times compared to the commercially available LED drivers. This is a significant improvement in both the efficiency and the size of the LED drivers. In the resulting designs, the magnetics are no longer the largest part of the circuit. In the third part of the thesis several numerical and experimental tests are presented. The models developed in this thesis, are verified against results from 2D FEA, 3D FEA, direct measurement of MEMS fabricated devices (for both in-insulator devices for flip-chip bonding and in-silicon devices for direct integration), and in-circuit experimentation of the fabricated devices. These tests show that the equivalent-circuit models presented in this thesis have greater accuracy than existing models. The results also show that these models are good enough to support the LED driver optimization.

Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and MEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.

Topics covered in this book include: DC-DC converters; power semiconductors; market analysis and strategies; AC-DC power supplies; ICs for power electronics; product and technology roadmaps; inverters and cycloconverters; design and analysis of magnetic devices; and the voice of the customer.

Power Management Integrated Circuits and Technologies delivers a modern treatise on mixed-signal integrated circuit design for power management. Comprised of chapters authored by leading researchers from industry and academia, this definitive text: Describes circuit- and architectural-level innovations that meet advanced power and speed capabilities Explores hybrid inductive-capacitive converters for wide-range dynamic voltage scaling Presents innovative control techniques for single inductor dual output (SIDO) and single inductor multiple output (SIMO) converters Discusses cutting-edge design techniques including switching converters for analog/RF loads Compares the use of GaAs pHEMTs to CMOS devices for efficient high-frequency switching converters Thus, Power Management Integrated Circuits and Technologies provides comprehensive, state-of-the-art coverage of this exciting and emerging field of engineering.

Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working
field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.

Copyright code: 08f8daa59357580f825216491e321342